IOPscience

Home Search Collections Journals About Contact us My IOPscience

Novel effects of size disorder on the electronic and magnetic properties of rare earth manganates of the type $La_{0.7-x}Ln_xBa_{0.3}MnO_3$ (Ln = Pr,Nd, Gd or Dy) with large average radius of the A-site cations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 4171

(http://iopscience.iop.org/0953-8984/17/26/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 28/05/2010 at 05:13

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 17 (2005) 4171-4180

Novel effects of size disorder on the electronic and magnetic properties of rare earth manganates of the type $La_{0.7-x}Ln_xBa_{0.3}MnO_3$ (Ln = Pr, Nd, Gd or Dy) with large average radius of the A-site cations

Asish K Kundu¹, Md Motin Seikh^{1,2}, K Ramesha³ and C N R Rao^{1,2,4}

¹ Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560 064, India

² Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560 012, India

³ Materials Department, University of California, Santa Barbara, CA 93106, USA

E-mail: cnrrao@jncasr.ac.in

Received 2 March 2005, in final form 18 May 2005 Published 17 June 2005 Online at stacks.iop.org/JPhysCM/17/4171

Abstract

The electronic and magnetic properties of four series of rare earth manganates of the general formula $La_{0,7-x}Ln_xBa_{0,3}MnO_3$ (Ln = Pr, Nd, Gd or Dy) have been investigated to examine the effect of large size disorder in a system where the average radius of the A-site cations, $\langle r_A \rangle$, remains high (1.216–1.292 Å) and the Mn³⁺/Mn⁴⁺ ratio is kept constant. The size disorder, as measured by the Attfield σ^2 parameter, has been varied over a wide range of 0.001 and 0.03 Å^2 . As x is increased, the materials exhibit a decrease in the ferromagnetic Curie temperature, T_c , or lose ferromagnetism entirely. This is accompanied by an insulator-metal (I–M) transition, with T_{IM} decreasing with increasing x, or an entirely insulating behaviour. The insulating behaviour and loss of ferromagnetism occurs when σ^2 is close to 0.02 Å². Thus, in the Ln = Nd, Gd and Dy series, the non-magnetic insulating behaviour occurs at x values of 0.7, 0.5 and 0.3 respectively. Where an I–M transition occurs, $T_{IM} < T_c$, indicating the presence of a ferromagnetic insulating regime. The absence of long-range ferromagnetism in some of the compositions is accompanied by a divergence between the zero-field-cooled and the field-cooled magnetization data. The ferromagnetic or non-magnetic insulating state is due to phase separation wherein ferromagnetic clusters are present in an insulating matrix. The nonmagnetic insulating compositions can be rendered ferromagnetic and metallic by decreasing σ^2 while keeping $\langle r_A \rangle$ constant. This extraordinary display of the effect of size disorder on the properties of the rare earth manganates is noteworthy.

0953-8984/05/264171+10\$30.00 © 2005 IOP Publishing Ltd Printed in the UK

⁴ Author to whom any correspondence should be addressed.

1. Introduction

Rare-earth manganates of the type $Ln_{1-x}A_xMnO_3$ (Ln = rare earth, A = alkaline earth) exhibit many interesting properties such as colossal magnetoresistance, charge ordering, orbital ordering and electronic phase separation [1-5]. All these properties are highly sensitive to the average radius of the A-site cation, $\langle r_A \rangle$, as well as the size disorder arising from the mismatch between the A-site cations [4, 6, 7]. A detailed study of several compositions of the $La_{0.7-x}Ln_xCa_{0.3}MnO_3$ series of manganates has shown the occurrence of electronic phase separation above a critical composition x_c [8–10]. In this series of manganates, $\langle r_A \rangle$ decreases markedly with increase in x, accompanied by an increase in size disorder. Above x_c , the materials become insulating and do not show ferromagnetism, the x_c values corresponding to the critical $\langle r_A \rangle$ value, $\langle r_A^c \rangle$, of 1.18 Å. Electronic phase separation occurs in the region of $\langle r_{\rm A}^{\rm c} \rangle$ [8–10]. In order to fully appreciate the effect of the size mismatch between Asite cations, we considered it important to investigate a series of manganates, where the $\langle r_A \rangle$ remains substantially large, well above $\langle r_A^c \rangle$ through the series, but the size disorder increases significantly. La_{0.7}Ba_{0.3}MnO₃, with $\langle r_A \rangle$ of 1.292 Å, is a good ferromagnetic metal with a ferromagnetic transition temperature, T_c , of 340 K [11]. The T_c is, however, lower than the value expected on the basis of the large A-site cation radius, because of the mismatch between the A-site cations [7, 12, 13]. Thus, the size variance, σ^2 , defined as $\sigma^2 = \sum x_i r_i^2 - \langle r_A \rangle^2$, where x_i is the fractional occupancy of A-site ions, r_i is the corresponding ionic radius [12], is quite large, the value being 0.014 Å². Pr_{0.7}Ba_{0.3}MnO₃ [14, 15], with a $\langle r_A \rangle$ of 1.266 Å and σ^2 of 0.018 Å², shows a distinct ferromagnetic transition around 190 K due to long-range ferromagnetic ordering and an insulator-metal (I-M) transition at a lower temperature. The properties of Nd_{0.7}Ba_{0.3}MnO₃ with an $\langle r_A \rangle$ of 1.255 Å and σ^2 of 0.020 Å², however, appear to be quite different, with an unusual insulating behaviour [16]. We have investigated the effect of substitution of La in La_{0.7}Ba_{0.3}MnO₃ by the smaller rare earth ions Pr, Nd, Gd and Dy, on the magnetic and electron transport properties, to understand the evolution of the insulating behaviour accompanying the disappearance of ferromagnetism, primarily arising from size disorder. It is to be noted that, in a given series of manganates, the size disorder increases considerably with x, although $\langle r_A \rangle$ remains in the range 1.216–1.292 Å, and the carrier concentration or the Mn³⁺/Mn⁴⁺ ratio is constant. In order to evaluate the effect of size disorder quantitatively, we have varied σ^2 in two series of manganates of the type $Ln_{0.7-x}Ln'_{x}A_{0.3-y}A'_{y}MnO_{3}$, wherein $\langle r_{A} \rangle$ is kept constant at 1.266 and 1.216 Å, corresponding to the $\langle r_A \rangle$ of Pr_{0.7}Ba_{0.3}MnO₃ and Gd_{0.7}Ba_{0.3}MnO₃ respectively.

2. Experimental procedure

Polycrystalline samples of La_{0.7-x}Ln_xBa_{0.3}MnO₃ (Ln = Pr, Nd, Gd and Dy) were prepared by the ceramic method. Stoichiometric mixtures of the respective rare earth oxides, alkaline earth carbonates and MnO₂ were weighed in the desired proportions and milled for a few hours with propanol. The mixtures were dried, and calcined in air at 950 °C, followed by heating at 1000 and 1100 °C for 12 h each in air. The powders thus obtained were pelletized and the pellets sintered at 1400 °C for 24 h in air. Two series of manganates of the general formula Ln_{0.7-x}Ln'_xA_{0.3-y}A'_yMnO₃, with fixed $\langle r_A \rangle$ values of 1.266 and 1.216 Å, were prepared by the same method. Composition analysis was carried out using energy dispersive x-ray analysis (EDAX) using a LEICA S440I scanning electron microscope fitted with a Si–Li detector. The oxygen stoichiometry was determined by iodometric titrations. The error in oxygen content was ±0.02. The oxygen stoichiometry in the La_{0.7-x}Ln_xBa_{0.3}MnO₃ and Ln_{0.7-x}Ln'_xA_{0.3-y}A'_yMnO₃ series studied by us was generally 2.97 ± 0.03.

	(r.)	σ^2	Space	Lattice	paramete								
Composition	(Å)	(Å ²)	group	а	b	c/√2	$T_{\rm c}$ (K)	$T_{\mathrm{IM}}\left(\mathrm{K}\right)$					
x = 0.0	1.292	0.014	Pnma	5.534	5.529	5.529	340	_					
Ln = Pr													
x = 0.1	1.289	0.014	Pnma	5.529	5.514	5.527	320	_					
x = 0.3	1.281	0.016	Pnma	5.527	5.523	5.519	285	270					
x = 0.5	1.274	0.017	Pnma	5.517	5.510	5.503	235	210					
x = 0.6	1.270	0.017	Pnma	5.520	5.500	5.507	210	175					
x = 0.7	1.266	0.018	Pnma	5.512	5.495	5.505	190	150					
Ln = Nd													
x = 0.3	1.276	0.017	Pnma	5.511	5.513	5.524	250	240					
x = 0.5	1.266	0.018	Pnma	5.507	5.506	5.507	190	160					
x = 0.7	1.255	0.020	Pnma	5.498	5.497	5.498	150	_					
Ln = Gd													
x = 0.1	1.281	0.016	Pnma	5.527	5.524	5.525	280	275					
x = 0.2	1.270	0.019	Pnma	5.527	5.516	5.517	210	190					
x = 0.3	1.259	0.021	Pnma	5.521	5.511	5.511	150	120					
x = 0.5	1.238	0.025	Pnma	5.496	5.491	5.497	_	—					
x = 0.6	1.227	0.026	Pnma	5.496	5.487	5.488	_	—					
x = 0.7	1.216	0.027	Pnma	5.479	5.471	5.477		—					
Ln = Dy													
x = 0.1	1.279	0.017	Pnma	5.530	5.515	5.525	270	270					
x = 0.2	1.266	0.020	Pnma	5.521	5.508	5.511	190	170					
x = 0.3	1.252	0.023	Pnma	5.510	5.501	5.497	_	_					
x = 0.4	1.239	0.026	Pnma	5.507	5.496	5.496	_	—					

Table 1. Crystal structure and properties of $La_{0.7-x}Ln_xBa_{0.3}MnO_3$ (Ln = Pr, Nd, Gd or Dy).

^a Uncertainty is approximately ± 0.004 .

The phase purity of the manganates was established by recording the x-ray diffraction patterns in the 2θ range 10° – 80° with a Seiferts 3000 TT diffractometer using Cu K α radiation. Electrical resistivity (ρ) measurements were carried out from 320 to 20 K by the four-probe method. Magnetization (*M*) measurements were made with a vibrating sample magnetometer (VSM) (Lakeshore 7300) and with a Quantum Design MPMS 5XL magnetometer. In the VSM and MPMS 5XL measurements the data were collected in the 300–50 and 350–10 K ranges, respectively. The temperature dependence of the zero-field-cooled (ZFC), field-cooled (FC) and the frequency dependence AC susceptibility measurements were recorded in the MPMS 5XL magnetometer. For the ZFC measurement the sample was cooled down from 350 to 10 K in zero-field, and for the FC measurement the sample was cooled to 10 K in an applied field of 500 Oe. The data were all recorded during reheating the sample.

3. Results and discussion

All the manganate compositions of the formula $La_{0.7-x}Ln_xBa_{0.3}MnO_3$ (Ln = Pr, Nd, Gd and Dy) could be indexed on an orthorhombic structure with the *Pnma* space group. We have listed the lattice parameters of the various compositions in table 1 along with the values of $\langle r_A \rangle$ and the size variance σ^2 . The lattice parameters as well as the volume of the unit cell

Figure 1. Temperature variation of (a) the magnetization, M, (H = 500 Oe) and (b) the electrical resistivity, ρ , of La_{0.7-x}Pr_xBa_{0.3}MnO₃.

vary linearly with $\langle r_A \rangle$, as expected. In figure 1, we show the magnetization and resistivity data of the La_{0.7-x}Pr_xBa_{0.3}MnO₃ series of manganates. The T_c value decreases progressively with increasing x, reaching a value of 190 K in Pr_{0.7}Ba_{0.3}MnO₃. The value of the saturation magnetization decreases only slightly with the increase in x (35–29 emu g⁻¹ at 60 K in the x = 0.0-0.7 range). The material is metallic at room temperature up to x = 0.3 and exhibits a broad I–M transition when $x \ge 0.3$, the transition around 150 K ($T_{\rm IM}$) which is lower than the T_c value. This value of $T_{\rm IM}$ is somewhat higher than that reported by Heilman *et al* [14]. It is interesting that, as x approaches 0.7, the difference between T_c and $T_{\rm IM}$ increases, with the latter becoming considerably lower than T_c . Pr_{0.7}Ba_{0.3}MnO₃ is, therefore, a ferromagnetic insulator in the regime between T_c and $T_{\rm IM}$ (190–150 K).

The magnetization and resistivity data of $La_{0.7-x}Nd_xBa_{0.3}MnO_3$ are shown in figure 2. Here again, the T_c value decreases with increasing x, and there is a marked decrease in the value of the saturation magnetization as well. There is a sharp increase in magnetization with an apparent T_c of ~150 K in Nd_{0.7}Ba_{0.3}MnO₃. But the saturation moment is small, suggesting there may be no long-range ferromagnetic ordering in the material. Thus, the saturation magnetization is 30 emu g⁻¹ at x = 0.3 and Nd_{0.7}Ba_{0.3}MnO₃ (x = 0.7) does not exhibit clear saturation down to low temperatures. The highest value of magnetization obtained for Nd_{0.7}Ba_{0.3}MnO₃ is 18 emu g⁻¹ at 60 K compared to 35 emu g⁻¹ in La_{0.7}Ba_{0.3}MnO₃.

Figure 2. Temperature variation of (a) the magnetization, M, (H = 500 Oe) and (b) the electrical resistivity, ρ , of La_{0.7-x}Nd_xBa_{0.3}MnO₃. The arrow mark is explained in text.

Figure 3. Temperature variation of the magnetization, M, of (a) Nd_{0.7}Ba_{0.3}MnO₃ (b) Gd_{0.7}Ba_{0.3}MnO₃ (c) La_{0.2}Gd_{0.5}Ba_{0.3}MnO₃ and (d) La_{0.4}Dy_{0.3}Ba_{0.3}MnO₃ (at H = 500 Oe). The solid symbols represent FC and open symbols represent ZFC data, respectively.

Figure 4. Temperature variation of (a) the magnetization, M, (H = 500 Oe) and (b) the electrical resistivity, ρ , of La_{0.7-x}Gd_xBa_{0.3}MnO₃.

The saturation magnetic moments in Nd_{0.7}Ba_{0.3}MnO₃ and La_{0.7}Ba_{0.3}MnO₃ are 0.8 and 1.5 $\mu_{\rm B}$ respectively, while that in Pr_{0.7}Ba_{0.3}MnO₃ is 1.2 $\mu_{\rm B}$ (at H = 500 Oe). Accordingly, the ZFC and FC data show considerable divergence below $T_{\rm c}$ (figure 3(a)), unlike in Pr_{0.7}Ba_{0.3}MnO₃. The resistivity behaviour of La_{0.7-x}Nd_xBa_{0.3}MnO₃ is quite different from that of La_{0.7-x}Pr_xBa_{0.3}MnO₃. The La_{0.7-x}Nd_xBa_{0.3}MnO₃ compositions show a broad I–M transition when x = 0.3 and 0.5, but the 0.7 composition is an insulator with high resistivity. The resistivity behaviour of Nd_{0.7}Ba_{0.3}MnO₃ found by us differs from the earlier report [16] to some extent. We do not find a distinct I–M transition in this material nor two resistivity peaks around $T_{\rm IM}$. We barely see a shoulder around $T_{\rm c}$ as shown by the arrow in figure 2. Since Nd_{0.7}Ba_{0.3}MnO₃ does not show long-range ferromagnetic ordering, it would appear that the material contains ferromagnetic clusters in the insulating matrix. The double peaks in resistivity data reported earlier [16] or the shoulder near $T_{\rm c}$ found by us also suggest such phase separation. Ferromagnetic clusters in an insulating matrix would also be present in other compositions (0.0 < x < 0.7) where $T_{\rm c} > T_{\rm IM}$.

In the La_{0.7-x}Gd_xBa_{0.3}MnO₃ series, progressive substitution of La by Gd causes the ferromagnetic features to disappear entirely when $x \ge 0.5$ (figure 4(a)). Even when x = 0.3, the T_c is only 155 K and the saturation magnetization is 20 emu g⁻¹ at 60 K.

Figure 5. Temperature variation of (a) the magnetization, M, (H = 500 Oe) and (b) the electrical resistivity, ρ , of La_{0.7-x}Dy_xBa_{0.3}MnO₃.

The $x \ge 0.5$ compositions exhibit divergence between the ZFC and FC magnetization data (see figures 3(b) and (c)), indicating the absence of long-range ferromagnetic ordering. AC susceptibility measurements reveal a weakly frequency-dependent peak at 50 and 40 K respectively in the x = 0.5 and 0.7 compositions. These compositions also fail to show the I–M transitions in the resistivity data, whereas the samples with x < 0.5 show distinct I–M transitions. The compositions with x > 0.5 are insulating just as Nd_{0.7}Ba_{0.3}MnO₃ and the resistivity of Gd_{0.7}Ba_{0.3}MnO₃ is higher than that of Nd_{0.7}Ba_{0.3}MnO₃ (figure 4(b)). In the La_{0.7-x}Dy_xBa_{0.3}MnO₃ series, ferromagnetism does not occur for x > 0.2 (figure 5(a)). The x = 0.2 composition shows an apparent T_c of 180 K, but the saturation magnetization is very low (18 emu g⁻¹). The x = 0.2 composition shows the I–M transition, but all the compositions with x > 0.2 are insulating, the resistivity being higher than that of the corresponding Gd and Nd substituted manganates. The ZFC and FC data of the x = 0.3 composition show divergence (figure 3(d)), indicating the absence of long-range ferromagnetic ordering.

In both the La_{0.7-x}Gd_xBa_{0.3}MnO₃ and La_{0.7-x}Dy_xBa_{0.3}MnO₃ series of manganates, ferromagnetism disappears as x increases, accompanied by an insulating behaviour. The apparent ferromagnetic transitions with a low saturation magnetization observed for x = 0.3 and 0.2 at 150 and 180 K respectively in the Gd and Dy derivatives, and associated with T_{IM} values lower than T_c , pointing to the presence of a ferromagnetic insulating state. It is likely

Figure 6. Temperature variation of (a) the magnetization, M, (H = 500 Oe) and (b) the electrical resistivity, ρ , of $Ln_{0.7-x}Ln'_xA_{0.3-y}A'_yMnO_3$ with a fixed $\langle r_A \rangle$ value of 1.266 Å.

that, in all the compositions where the ferromagnetic insulating state occurs, there is phase separation wherein ferromagnetic clusters are present in an insulating matrix. It is interesting that the difference between T_c and T_{IM} manifests itself only when σ^2 is considerably large. In the four series of $La_{0.7-x}Ln_xBa_{0.3}MnO_3$ studied by us, the difference between T_c and T_{IM} starts emerging when the $\sigma^2 = 0.016 \text{ Å}^2$, although the $\langle r_A \rangle$ is relatively large, being around 1.28 Å. Clearly the size disorder plays a crucial role in determining the properties of these manganates.

In order to investigate the effect of size disorder quantitatively, we have examined the compositions with constant $\langle r_A \rangle$ values corresponding to $Pr_{0.7}Ba_{0.3}MnO_3$ and $Gd_{0.7}Ba_{0.3}MnO_3$ respectively, and varied the σ^2 . In table 2, we list the structural parameters of two series of manganates. The magnetization and resistivity data of the compositions with $\langle r_A \rangle = 1.266$ Å are shown in figure 6. We see that T_c increases with decreasing σ^2 and the material becomes metallic at the lowest value of $\sigma^2 = 0.008$ Å², while I–M transitions occur in the σ^2 range 0.02–0.01 Å². This is indeed a nice result in that a system normally showing an I–M transition becomes metallic as the size disorder is decreased. The effect of size disorder is seen more vividly when the $\langle r_A \rangle$ value is 1.216 Å, corresponding to $Gd_{0.7}Ba_{0.3}MnO_3$, a non-magnetic insulating material. However, when the size disorder is decreased, the material becomes ferromagnetic, with T_c going up to ~300 K at the lowest value of σ^2 (figure 7(a)). As σ^2 decreases, the insulating behaviour also gives way to metallic behaviour. The T_c

Figure 7. Temperature variation of (a) the magnetization, M, (H = 500 Oe) and (b) the electrical resistivity, ρ , of $\text{Ln}_{0.7-x}\text{Ln}'_x\text{A}_{0.3-y}\text{A}'_y\text{MnO}_3$ with a fixed $\langle r_A \rangle$ value of 1.216 Å.

	σ^2	Space group	L	V								
Composition	(Å ²)		а	b	c/√2	(Å ³)						
$\langle r_{\rm A} \rangle = 1.266 \text{ Å}$												
La _{0.7} Ba _{0.14} Sr _{0.16} MnO ₃	0.008	Pnma	5.520	5.496	5.596	236						
La _{0.7} Ba _{0.21} Ca _{0.09} MnO ₃	0.011	Pnma	5.537	5.508	5.501	237						
Pr _{0.7} Ba _{0.3} MnO ₃	0.018	Pnma	5.512	5.495	5.505	236						
$La_{0.5}Dy_{0.2}Ba_{0.3}MnO_3$	0.021	Pnma	5.521	5.508	5.511	237						
$\langle r_{\rm A} \rangle = 1.216 {\rm \AA}$												
La _{0.7} Sr _{0.08} Ca _{0.22} MnO ₃	0.001	Pnma	5.467	5.468	5.476	232						
Nd _{0.7} Ba _{0.06} Sr _{0.24} MnO ₃	0.008	Pnma	5.474	5.464	5.469	232						
Pr _{0.7} Ba _{0.125} Ca _{0.125} MnO ₃	0.009	Pnma	5.485	5.474	5.474	233						
Nd _{0.7} Ba _{0.165} Ca _{0.135} MnO ₃	0.013	Pnma	5.490	5.473	5.469	233						
Sm _{0.7} Ba _{0.24} Ca _{0.06} MnO ₃	0.021	Pnma	5.483	5.472	5.473	233						
$Gd_{0.7}Ba_{0.3}MnO_3$	0.028	Pnma	5.479	5.471	5.477	233						

Table 2. Crystal structure of $Ln_{0.7-x}Ln'_xA_{0.3-y}A'_yMnO_3$ with fixed $\langle r_A \rangle$.

values (in figures 6(a) and 7(a)) vary linearly with σ^2 with the slopes of $10\,235 \pm 2191$ and $17\,068 \pm 3260 \text{ K} \text{ Å}^{-2}$ for $\langle r_A \rangle$ of 1.266 Å and $\langle r_A \rangle$ of 1.216 Å, respectively. The corresponding

values of intercepts, T_c^0 , are 374 ± 5 and 305 ± 3 K, respectively. These values are comparable to those reported in the literature for other series of manganates [10, 17].

4. Conclusions

The present study on the electronic and magnetic properties of the four series of $La_{0.7-x}Ln_xBa_{0.3}MnO_3$ (Ln = Pr, Nd, Gd and Dy) manganates, wherein the average radius of the A-site cation generally remains large (1.216–1.292 Å), but the size disorder is also considerable, has revealed certain interesting aspects. Since the band narrowing due to small $\langle r_A \rangle$ is entirely avoided, the predominant effect is due to size disorder. It is interesting that these materials show a progressive decrease in the ferromagnetic T_C , eventually giving rise to a non-magnetic insulating behaviour. Accordingly, with increasing x or σ^2 , the material exhibits a ferromagnetic insulating phase due to the presence of ferromagnetic clusters in the insulating matrix. At large x or σ^2 , where some of the compositions lose ferromagnetic interaction. In the insulating regime caused by size disorder, there is clearly phase separation due to the presence of ferromagnetic clusters in an insulating matrix. The phase separation is minimized or eliminated by decreasing σ^2 , as evidenced from the change of the non-magnetic insulating phase to a ferromagnetic insulating state.

Acknowledgments

The authors would like to thank BRNS (DAE), India, for support of this research. AKK thanks the University Grants Commission and MMS thanks CSIR, India, for a research fellowship award.

References

- Rao C N R and Raveau B (ed) 1998 Colossal Magnetoresistance, Charge Ordering, and Related Properties of Manganese Oxides (Singapore: World Scientific)
- [2] Tokura Y (ed) 1999 Colossal Magnetoresistance Oxides (London: Gordon and Breach)
- [3] Ramirez A P 1997 J. Phys.: Condens. Matter 9 8171
- [4] Rao C N R 2000 J. Phys. Chem. B 104 5877
- [5] Dagotto E (ed) 2003 Nano Scale Phase Separation and Colossal Magnetoresistance (Berlin: Sringer)
- [6] Rao C N R and Vanitha P V 2002 Curr. Opin. Solid State Mater. Sci. 6 97
- [7] Rogriguez-Martinez L M and Attfield J P 2000 Phys. Rev. B 63 024424
- [8] Uehara M, Mori S, Chen C H and Cheong S W 1999 Nature 399 560
- [9] Balagurov A M, Pomjakushin V Yu, Sheptyakov D V, Aksenov V L, Fischer P, Keller L, Gorbenko O Yu, Kaul A R and Babushkina N A 2001 Phys. Rev. B 64 024420
- [10] Sudheendra L and Rao C N R 2003 J. Phys.: Condens. Matter 15 3029 and references therein
- [11] Ju H L, Gopalakrishnan J, Peng J L, Li Qi, Xiong G C, Venkatesan T and Greene R L 1995 Phys. Rev. B 51 6143
- [12] Rogriguez-Martinez L M and Attfield J P 1996 Phys. Rev. B 54 R15622
- [13] Mahesh R, Mahendiran R, Raychaudhuri A K and Rao C N R 1995 J. Solid State Chem. 120 204
- [14] Heilman A K, Xue Y Y, Lorenz B, Campbell B J, Cmaidalka J, Meng R L, Yang Y S and Chu C W 2002 Phys. Rev. B 65 214423
- [15] Ellouze M, Boujelben W, Cheikhrouhou A, Fuess H and Madar R 2002 Solid State Commun. 124 125
- [16] Maignan A, Martin C, Hervieu M, Raveau B and Hejtmanek J 1998 Solid State Commun. 107 363
- [17] Damay F, Martin C, Maignan A and Raveau B 1997 J. Appl. Phys. 82 6181